# Ethereum Signature verified
In view of the fact that EIP712 can show users more intuitive and safe information, pw-lock preferentially supports EIP712 related signature method eth_signTypedData_v4. However, currently only a few ETH wallets can fully support EIP712. In order to fully support the Ethereum ecosystem, pw-lock also adapts to the personalSign signature currently supported by most Ethereum wallets.
PW-Lock script provides two signature verification methods: eth_personalSign and eth_signTypedData_v4.
# eth_personalSign
# hash calculation
The same hash calculation process is the same as the CKB system lock script secp256k1_blake160_sighash_all.c, but replace blake2b into keccak256.
# signature verification
// pseudo code, the actual code is written in C language
const wrappedMessageDigest = hashPersonalMessage(messageDigest)
/*
hashPersonalMessage = function(message: Buffer): Buffer {
const prefix = Buffer.from(
`\u0019Ethereum Signed Message:\n${message.length.toString()}`,
'utf-8',
)
return keccak(Buffer.concat([prefix, message]))
}
*/
const pubkey = secp256k1_ecdsa_recover(signature, wrappedMessageDigest)
if (pubkey.slice(12, 32) === lock.args){
return 0;
}
- Use the ECDSA_RECOVER algorithm to calculate the 32-byte pubkey from the personalHash and the signature.
- Check if the last 20 bytes of pubkey are equal to lock args (that is, Ethereum address).
# eth_signTypedData_v4
# hash calculation
The hash calculation process is the same as the CKB system lock script, except that blake2b is replaced by keccak256.
# signature verification
// pseudo code, the actual code is written in C language
const wrappedMessageDigest = hashPersonalMessage(messageDigest)
const typedData = {
domain: {
chainId: 1,
name: 'ckb.pw',
verifyingContract: '0xCcCCccccCCCCcCCCCCCcCcCccCcCCCcCcccccccC',
version: '1'
},
message: {
hash:
'0x545529d4464064d8394c557afb06f489e7044a63984c6113385431d93dcffa1b',
fee: '0.00100000CKB',
'input-sum': '100.00000000CKB',
to: [
{
address: 'ckb1qyqv4yga3pgw2h92hcnur7lepdfzmvg8wj7qwstnwm',
amount: '100.00000000CKB'
},
{
address:
'ckb1qftyhqxwuxdzp5zk4rctscnrr6stjrmfjdx54v05q8t3ad3493m6mhcekrn0vk575h44ql9ry53z3gzhtc2exudxcyg',
amount: '799.99800000CKB'
}
]
},
primaryType: 'CKBTransaction',
types: {
EIP712Domain: [
{ name: 'name', type: 'string' },
{ name: 'version', type: 'string' },
{ name: 'chainId', type: 'uint256' },
{ name: 'verifyingContract', type: 'address' }
],
CKBTransaction: [
{ name: 'hash', type: 'bytes32' },
{ name: 'fee', type: 'string' },
{ name: 'input-sum', type: 'string' },
{ name: 'to', type: 'Output[]' }
],
Output: [
{ name: 'address', type: 'string' },
{ name: 'amount', type: 'string' }
]
}
}
typedData.message.hash = wrappedMessageDigest
typedData.message['input-sum'] = total_input_amount(tx)
typedData.message.fee = total_input_amount(tx) - total_output_amount(tx)
typedData.message.to = extractTxOutputsInfo(tx)
According to the CKB transaction information, input-sum / fee / to related informations are calculated and assigned to the corresponding attribute of typedData.
# signature verification
// pseudo code, the actual code is written in C language
const sigUtil = require('eth-sig-util')
const wrappedMessageDigest2 = sigUtil.TypedDataUtils.sign(typedData)
const pubkey = secp256k1_ecdsa_recover(signature, wrappedMessageDigest2)
if( pubkey.slice(12,32) === lock.args){
return 0;
}
- Calculate wrappedMessageDigest2 by typedData, and use ECDSA_RECOVER algorithm to calculate 32-byte pubkey from wrappedMessageDigest2 and signature.
- Check if the last 20 bytes of pubkey are equal to lock args (that is, Ethereum address).